Degree of L_{1} Approximation to Integrable Functions by Modified Bernstein Polynomials

R. Bojanic
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210

AND
O. Shisha

Departhient of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SIXTY-FIFTH BIRTHDAY

1. Introduction and Results

If f is a function defined on $[0,1]$, the Bernstein polynomial $B_{n}(f)$ of f is

$$
B_{n}(f, x)=\sum_{k=0}^{n} f(k / n) p_{n, k}(x)
$$

where

$$
p_{n, k}(x)=\binom{n}{k} x^{\pi}(1-\cdots x)^{n-k}
$$

S. Bernstein [1] has proved that for every continuous function f on [0, 1],

$$
\max _{0<x=1} \mid B_{n}(f, x)-f(x) \rightarrow 0 \quad(n \rightarrow \infty)
$$

A more precise version of this result due to T. Popoviciu [2] states that

$$
\max _{0 \leqslant x \leqslant 1} \left\lvert\, B_{n}(f, x)-f(x) \leqslant \frac{5}{4} \omega_{f}\left(n^{-1 / 2}\right)\right.
$$

where ω_{f} is the uniform modulus of continuity of f defined by

$$
\omega_{f}(h)=:=\max \{|f(x)-f(y)|: x, y \in[0,1],|x-y| \leqslant h\} .
$$

A small modification of Bernstein polynomials due to L. A. Kantorovič [3]
makes it possible to approximate Lebesgue integrable functions in the L_{1} norm by the modified polynomials

$$
P_{n}(f, x)=(n+1) \sum_{k=0}^{n}\left(\int_{k \prime(n+1)}^{(k \mid 1) /(n+1)} f(t) d t\right) p_{n, k}(x) .
$$

The L_{1} analog of Bernstein's result was established by G. G. Lorentz [4] who has proved that for every Lebesgue integrable function f on $[0,1]$,

$$
\int_{0}^{1}\left|P_{n}(f, x)-f(x)\right| d x \rightarrow 0(n \rightarrow \infty) .
$$

As far as estimates of the degree of approximation to Lebesgue integrable functions by the polynomials $P_{n}(f)$ in the L_{1} norm are concerned, very little is known. A result which gives the degree of approximation to f by $P_{n}(f)$ for a very special class of Lebesgue integrable functions f is due to W. Hoeffding [5]. Hoeffding's result may be stated as follows.

If f is a Lebesgue integrable function on $[0,1]$, of bounded variation on every closed subinterval of $(0,1)$, then

$$
\int_{0}^{1}\left|P_{n}(f, x)-f(x)\right| d x \leqslant(2 / e)^{1 / 2} J(f) n^{-1 / 2}
$$

where

$$
J(f)=\int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2}|d f(x)|
$$

This result is useful when $J(f)<\infty$.
In this paper we shall show that

$$
\int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2} P_{n}(f, x)-f(x) d x
$$

can be estimated in terms of the L_{1} modulus of continuity

$$
\omega_{f}(h)_{L_{1}}=\sup _{u t_{i} \neq h} \int_{0}^{1}|f(x+-t)-f(x)| d x
$$

We assume here and in the rest of the paper that the function f is extended to $(-\infty, \infty)$ by periodicity with period 1 (its value at the integers is immaterial). The L_{1} norm with the weight function $w(x)=x^{1 / 2}(1-x)^{1 / 2}$ seems to be a more convenient norm than the usual L_{1} norm for the study of approximation properties of modified Bernstein polynomials.

Our result may be stated as follows.
Theorem. Let f be a Lebesgue integrable on function [0, 1]. Then, for $n \geqslant 2$,

$$
\int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2}\left|P_{n}(f, x)-f(x)\right| d x \leqslant \frac{2 \pi^{2}}{3} \omega_{f}\left(n^{-1 / 2}\right)_{L_{1}}
$$

2. Lemmas

The proof of our theorem is based on two lemmas.
Lemma 1. If f is a Lebesgue integrable function on $[0,1]$, then, for $n \geqslant 2$ and for $x \in(0,1)$, we have

$$
\begin{aligned}
& x(1-x)\left(P_{n-1}(f, x)-f(x)\right) \\
&=\sum_{k=0}^{n} n p_{n, k}(x)\left(\frac{k}{n}-x\right) \int_{0}^{k / n-x}(f(x+t)-f(x)) d t
\end{aligned}
$$

Proof. We have

$$
P_{n-1}(f, x)=\int_{0}^{1} K_{n}(x, t) f(t) d t
$$

where

$$
K_{n}(x, t)=n \sum_{k=0}^{n-1} p_{n-1, k}(x) \chi_{(k / n,(k+1) / n]}(t),
$$

$\chi_{(k / n,(k+1) / n]}(t)$ being the characteristic function of $(k / n,(k+1) / n]$. By partial summation we find that

$$
\begin{aligned}
\sum_{k=0}^{n-1} p_{n-1, k}(x) \chi_{(k / n,(k+1) / n]}(t)= & p_{n-1, n-1}(x) \chi_{[0,1]}(t)-p_{n-1,0}(x) \chi_{[0,01}(t) \\
& +\sum_{k=1}^{n-1}\left(p_{n-1, k-1}(x)-p_{n-1, k}(x)\right) \chi_{[0, k / n]}(t)
\end{aligned}
$$

Since

$$
\begin{aligned}
p_{n-1, k-1}(x)-p_{n-1, k}(x) & =\left(\binom{n-1}{k-1}(1-x)-\binom{n-1}{k}(x) x^{k-1}(1-x)^{n-k-1}\right. \\
& =\binom{n}{k}\left(\frac{k}{n}-x\right) x^{k-1}(1-x)^{n-k-1},
\end{aligned}
$$

we have

$$
x(1-x)\left(p_{n-1, k-1}(x)-p_{n-1, k}(x)\right)=(k / n-x) p_{n, k}(x)
$$

and it follows that

$$
x(1-x) K_{n}(x, t)=\sum_{k=0}^{n} n p_{n, k}(x)\left(\frac{k}{n}-x\right) \chi_{[0, k f n]}(t) .
$$

Hence,

$$
\begin{aligned}
x(1-x) P_{n-1}(f, x) & =\sum_{k=0}^{n} n p_{n, k}(x)\left(\frac{k}{n}-x\right) \int_{0}^{k / n} f(t) d t \\
& =\sum_{k=0}^{n} n p_{n, k}(x)\left(\frac{k}{n}-x\right) \int_{x}^{k / n} f(t) d t
\end{aligned}
$$

and the proof of the lemma is complete, since

$$
\sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{2} p_{n, k}(x)=x(1-x) / n
$$

Our second lemma is a more precise version of a known inequality (see [6, p. 15]).

Lemma 2. For $n \geqslant 2$ and $x \in[0,1]$ we have

$$
\sum_{k=0}^{n}|k / n-x|^{5} p_{n, k c}(x) \leqslant x(1-x) / n^{5 / 2}
$$

Proof. We have

$$
\sum_{k=0}^{n}\left|\frac{k}{n}-x\right|^{5} p_{n, k}(x) \leqslant\left(\sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{4} p_{n . k}(x)\right)^{1 / 2}\left(\sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{6} p_{n, k}(x)\right)^{1 / 2}
$$

and the result follows, since

$$
\begin{aligned}
\sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{4} p_{n, k}(x)= & \frac{x(1-x)}{n^{2}}\left(3 x(1-x)+\frac{1-6 x(1-x)}{n}\right) \\
& \leqslant \frac{x(1-x)}{n^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{n}\left(\frac{k}{n}-x\right)^{6} p_{n, k}(x) \\
&= \frac{x(1-x)}{n^{3}}\left(15 x^{2}(1-x)^{2}+\frac{25 x(1-x)-130 x^{2}(1-x)^{2}}{n}\right. \\
&\left.+\frac{1-6 x(1-x)-36 x^{2}(1-x)^{2}+168 x^{3}(1-x)^{3}}{n^{2}}\right) \\
& \leqslant \frac{x(1-x)}{n^{3}}
\end{aligned}
$$

for $x \in[0,1]$.

3. Proof of the Theorem

Let $x \in(0,1)$. By Lemma 1 we have

$$
\begin{aligned}
x(1 & -x) \mid P_{n-1}(f, x)-f(x) \\
& \leqslant \sum_{k=0}^{n} n p_{n, k}(x)\left|\frac{k}{n}-x\right|\left|\int_{0}^{k ; n-x}(f(x+t)-f(x)) d t\right| \\
& \leqslant \sum_{k=0}^{n} n p_{n, k}(x)\left|\frac{k}{n}-x\right| \int_{-k, n \cdots x \mid}^{|k ; n-x|}|f(x+t)-f(x)| d t \\
& \leqslant \sum_{r=0}^{[1 / \delta]} I_{n, r}(x),
\end{aligned}
$$

where $\delta \in(0,1)$ and

$$
I_{n}(x)=\sum_{r \delta<|k / n-x| \leqslant(r+1) \bar{o}} n p_{n, k}(x)\left|\frac{k}{n}-x\right| \int_{-\mid k / n-x^{\prime}}^{|n / n-x|}|f(x+t)-f(x)| d t .
$$

Clearly

$$
I_{n, r}(x) \leqslant S_{r}(n, \delta ; x) \int_{-(r+1) \delta}^{(r+1) \delta}|f(x+t)-f(x)| d t
$$

where

$$
S_{r}(n, \delta ; x)=\sum_{r \bar{\delta}<|k n-x| \leqslant(r!1) \bar{\delta}} n p_{n, k}(x)\left|\frac{k}{n}-x\right|
$$

Hence, it follows that
$x(1-x)\left|P_{n-1}(f, x)-f(x) \leqslant \sum_{r=0}^{\mid 1 / \delta 1} S_{r}(n, \delta ; x) \int_{-(r ; 1) \delta}^{(r+1) \delta} f(x+t)-f(x)\right| d t$.
Next we shall estimate the coefficients $S_{r}(n, \delta ; x)$ for $r=0$ and $1 \leqslant r \leqslant[1 / \delta]$. We have first

$$
\begin{align*}
S_{0}(n, \delta ; x)= & \sum_{|k / n-x| \leqslant \delta} n p_{n, k}(x)|k / n-x| \sum_{k=0}^{n} n p_{n, k}(x)|k / n-x| \\
& \leqslant n^{1 / 2} x^{1 / 2}(1-x)^{1 / 2} . \tag{2}
\end{align*}
$$

Next, for $1 \leqslant r \leqslant[1 / \delta]$, we have, by Lemma 2 ,

$$
\begin{aligned}
S_{r}(n, \delta ; x) & \leqslant n(r+1)^{-4} \delta^{-4} \sum_{r \delta<|k ; n-x|<(r+1) \delta} ; k / n-x^{5} p_{n, k}(x) \\
& \leqslant n(r+1)^{-4} \delta^{-4} \sum_{k=0}^{n}!k / n-x^{15} p_{n, k}(x) \\
& \leqslant n^{-3 / 2} x(1-x)(r \div 1)^{-4} \delta^{ \pm},
\end{aligned}
$$

From (1), (2) and (3) it follows that

$$
\begin{aligned}
x^{1 / 2}(\mathrm{I} & -x)^{1 / 2}\left|P_{n-1}(f, x)-f(x)\right| \\
\leqslant & n^{1 / 2} \int_{0}^{1}|f(x+t)-f(x)| d t \\
& +\frac{1}{2} n^{-3 / 2} \delta^{-4} \sum_{r=1}^{[1 / \delta]}(r+1)^{-4} \int_{--(r+1) \delta}^{(r-1) \delta}: f(x+t)-f(x) \mid d t .
\end{aligned}
$$

Integrating this inequality and taking into account that

$$
\int_{-(r+1) \delta}^{(r+1) \delta}\left(\int_{0}^{1}|f(x+t)-f(x)| d x\right) d t \leqslant 2(r+1) \delta \omega_{j}((r+1) \delta)_{L_{1}}
$$

we find that

$$
\begin{aligned}
& \int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2}\left|P_{n-1}(f, x)-f(x)\right| d x \\
& \quad \leqslant 2 n^{1 / 2} \delta \omega_{f}(\delta)_{L_{1}}+n^{-3 / 2} \delta^{-3} \sum_{r=1}^{[1 / \delta]}(r-1)^{-3} \omega_{f}((r-1) \delta)_{L_{1}}
\end{aligned}
$$

Choosing here $\delta=n^{-1 / 2}$, we find that

$$
\begin{aligned}
& \int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2}: P_{n-1}(f, x)-f(x) \mid d x \\
& \quad \leqslant 2 \omega_{f}\left(n^{-1 / 2}\right)_{L_{1}}+\sum_{r=1}^{\left[n^{1 / 2}\right]}(r-1)^{-3} \omega_{f}\left((r+1) / n^{1 / 2}\right)_{L_{1}} \\
& \quad \leqslant 2 \sum_{k=1}^{\left[n^{1 / 2}\right]+1} k^{-3} \omega_{f}\left(k / n^{1 / 2}\right)_{L_{1}}
\end{aligned}
$$

Since the L_{1} modulus of continuity is a subadditive function, we have, for every $0<h_{1} \leqslant h_{2}$,

$$
2 \frac{\omega_{f}\left(h_{1}\right)_{L_{1}}}{h_{1}} \geq \frac{\omega_{f}\left(h_{2}\right)_{L_{1}}}{h_{2}}
$$

(see [7], p. 112). In particular we have, for $k \geqslant 1$,

$$
\omega_{f}\left(k / n^{1 / 2}\right)_{L_{1}} \leqslant 2 k \omega_{f}\left(n^{-1 / 2}\right)_{L_{1}} .
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2}\left|P_{n-1}(f, x)-f(x)\right| d x & \leqslant 4 \omega_{f}\left(n^{-1 / 2}\right)_{L_{1}} \sum_{k=1}^{\infty} k^{-2} \\
& \leqslant \frac{2 \pi^{2}}{3} \omega_{f}\left(n^{-1 / 2}\right)_{L_{1}}
\end{aligned}
$$

and the theorem is proved.

References

1. S. Bernstein, Démonstration du théorème de Weierstrass, fondé sur le calcul de probabilités, Commun. Soc. Math. Kharkow 13 (1912-13), 1-2.
2. T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj) 10 (1935), 49-54.
3. L. V. Kantorovič, Sur certains développements suivant les polynômes de la forme de S. Bernstein I, II, C. R. Acad. Sci. USSR 20 (1930), 563-568, 595-600.
4. G. G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Mat. Sb. 2 (1937), 543-556.
5. W. Hoeffding, The L_{1} norm of the Approximation Error for Bernstein-Type Polynomials, J. Approximation Theory 4 (1971), 347-356.
6. G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
7. A. F. Timan, "Theory of Approximation of Functions of a Real Variable" (Russian), Moscow, 1960.
